April 17, 2023

NC BioBlitz this week

Hello followers, just a heads-up that this week is BioBlitz week in NC. This spring three universities (Appalachian State University, UNC Greensboro, and UNC Wilmington) are heading off against each other in a friendly competition to see who has the greatest biodiversity on campus. If you're in the area, feel free to join our project at Appalachian State University and participate!

Even if you are not around to make observations, any help with IDs and marking things cultivated that aren't wild would still be very much appreciated! I predict lots of new iNat users and casual observations across all three campuses. Here is the Campus Nature Challenge project if you want to check all three schools at the same time.

Posted on April 17, 2023 04:04 PM by annkatrinrose annkatrinrose | 0 comments | Leave a comment

December 13, 2022

Monarch Annotation Project

While we're finishing out fall semester, I'm starting to plan what to do with my students in spring. I'd love to incorporate iNaturalist into class somehow, but spring is a challenging season for observations (winter weather keeping a lot of plants and critters dormant until shortly before finals). So I've been thinking about annotation projects that can be done with already existing observations that would also work as a homework assignment or snow day activity. So far, I've come up with this list of guidelines for such projects:

  • make use of observations already uploaded to iNat
  • suitable for beginners (no steep learning curve)
  • don't require students to make identifications
  • have a reasonable time limit (e.g. 3 hours to gather data)
  • could be split up to work as group projects for student teams
  • obtain results for discussion and further analysis

I like to try things out before using them in class, so I figured I would give the assignment to myself and pretend to be a student. Since I plan on focusing on phenology annotations in my Botany course, I wanted to pick something as a "pilot project" that isn't necessarily plant-focused to avoid basically doing the homework for my students. I want them to get curious about plants and design a cool project that they can own! Therefore, I picked the monarch butterfly for a proof-of-concept study and decided to annotate life stages. I think this is very similar to looking at plant phenology as it should be just as easy for a student to recognize e.g. a plant in bloom as it would be to tell butterflies and caterpillars apart. Additionally, it is a very iconic and easily recognized creature that gets ID'd very quickly and accurately by the community.

To demonstrate their understanding of the scientific method, students should start with a question to provide the motivation for collecting data. In my case of the monarchs, I've been curious for a while how their appearance here in the mountains compares to other places off the mountains. I rarely see any before mid summer. Why is that? My hypothesis was that the monarchs coming up from Mexico in spring avoid the colder mountains at first, but then later show up here to breed over the summer before the fall migration back south. Based on this, I would predict a lack of adult monarchs in the mountains in spring, but a bump of caterpillars for late summer and a bump for the adults migrating through in fall. The objective was to annotate life stages throughout the year across several locations to be able to test this hypothesis and compare the data between mountain and non-mountain areas.

I started with annotating life stages (egg, larva = caterpillar, pupa = chrysalis, adult = butterfly) for NC observations and indeed found a low number of butterflies in spring compared to summer and fall. Not quite content yet, I expanded west to include three more states crossing the migration path around the same latitude - Tennessee, Arkansas, and Oklahoma. I decided to stick with the same latitude since decreasing day-length is a major trigger for the migration in fall. Adding annotations for these took a couple of hours, but I think for a team of four students this would still be within the scope of time investment for a lab class project by splitting up the work to have each student tackle annotations for one state. I then took screenshots of the graphs for the annual distribution of life stages for all four states and used PowerPoint to create a summary of the results.


Monarch life cycle stages observed across the year for the states of Oklahoma, Arkansas, Tennessee, and North Carolina. NC is further split into Mountains, Piedmont, and Coastal Plain. Graphs on top of each other were adjusted in height to match the scales on the Y-axis for comparison across states and NC regions. (Note: I did not pay attention to scale the graphs for the regions to the states as well.) Vertical lines indicate peak observation times of butterflies in April, August, and October.

So the big question: Did this result in something interesting to discuss in class? You bet! Look at that neat bump of migrating butterflies in April in OK and AR that's basically missing in TN and NC. The 'central flyway hypothesis' for spring migration confirmed! Then there's a bump in adults showing up in August in NC, TN, and to some extent even AR, that's completely missing in OK, lending support to the idea of an eastward migration of butterflies into and across the Southern Appalachian Mountains in summer. Numbers peak again in October, consistent with the fall migration south.

Students could search for literature to expand the discussion, e.g. comparison with publications based on citizen science data from Journey North (two flyways revealed), or the study by Miller et al. that found monarchs crossing the Appalachians to the east coast in early July north of the area annotated here. One follow-up question to ask could be whether the bump in August in NC/TN represents monarchs raised locally or coming from the west or south or maybe even north. Students could suggest experiments that could be done, informed by the studies listed above and the Monarch Watch tagging program.

Additionally, there's the opportunity to discuss observer bias in citizen science projects. E.g. one would expect more monarchs migrating in fall through OK and AR than NC, yet the peak is higher in NC. How come? Are there more observers in NC than OK? Closer inspection of the observations in question reveals that there are a good number of fall roosts with dozens or even hundreds of butterflies observed in the Midwest, but basically none of those in NC. Therefore, the number of observations underestimates the total number of butterflies being observed in Oklahoma during October. Further, eggs and caterpillars are likely under-observed in general due to the difficulty in finding these to make observations in the first place.

One thing that might prove challenging from an instructor perspective is the difficulty of keeping track of annotations to confirm that students are doing their homework, and providing quality control for those from the teacher side. Unlike for identifications with leader boards for species and locations, there are no stats available for annotations. I haven't found a way yet to search for annotations made by a particular user/student. Maybe there is a URL hack for this, but I haven't been able to figure it out yet. Currently, I'm thinking of having the students summarize their results in the form of a term paper listing exactly what they did on iNat in the methods so I can follow up on it. There is also no way currently to correct a wrong annotation (there's a feature request) short of messaging the observer and/or annotator, as I think those are the only two people who could remove an annotation made in error. I don't think iNat notifies you when someone annotates your observations, so a lot of errors are probably not even getting noticed.

Overall, I'm pretty excited about the possibilities here and look forward to seeing what projects my students will come up with. I think the annotation features on iNat are still way underused and could be a neat way to have students engage with observations of interest to them and add value to iNaturalist by adding or improving data.

Posted on December 13, 2022 09:17 PM by annkatrinrose annkatrinrose | 1 comment | Leave a comment

December 08, 2022

Fairies, Unicorns, and Playing Devil's Advocate

Every now and then, someone will revive the discussion on the iNaturalist forum about the supposed uselessness of the male/female annotation option for plants. They aren't common but they are out there! Botanically speaking, these plant species are dioecious meaning male and female reproductive structures are present on separate individuals. So let me present a compelling case of using the male and female annotation for plants for citizen science.

Meet the fairywand, Chamaelirium luteum, also known as devil's bit, false unicorn, blazing-star, and helonias (all very confusing common names as they are shared with other plants). Its range extends over much of Eastern North America all the way from parts of New England and Canada down to Florida and west to Arkansas. A long-lived perennial, it takes about 5-7 years for a seed-grown plant to reach flowering age. The plants grow as basal rosettes of leaves with about 10-20% of the population bolting with tall flower stalks blooming in spring. As you might suspect already, this species is dioecious with male plants making staminate flowers only and female plants making pistillate flowers only. Interestingly, these male and female flowering plants are not evenly distributed but show a generally male-biased sex ratio. Why is that?


Chamaelirium luteum morphology, based on Britton & Brown's Illustrated Flora (public domain) and iNaturalist observation photo of a male (left) and female (right) plant (Milo Pyne, Creative Commons).

The sex distribution in this species was studied by Thomas Meagher at Duke University, NC, and summarized in several papers published in the early 1980s. The first study reported on the spatial distribution of males and females at four different study sites in North Carolina over the span of six years and found that plants of each sex tend to cluster together in same sex groupings with males usually closer to each other while females tend to grow more isolated (PDF). The second part of the study then took a closer look at the sex ratios at different developmental stages from seedlings to adults. While propagated seedlings started out with near equal representation of both sexes, flowering plants were found to show a significant bias with on average 3.5x as many males as females (PDF).

A third study classified the plants into three groups, juveniles of unknown sex, males, and females, and took a closer look at the possible explanations for the observed gender bias. It found differences in mortality rates with seedlings having the highest mortality rate, followed by juveniles and then females before males. Males started to flower at a younger age compared to females, and females grew consistently taller flower stalks with more cauline leaves then males, followed by a reduction in plant size the following year suggesting a higher reproductive cost of flowering and fruiting for females. While males were able to flower in subsequent years with some individuals blooming for every year of the study, females flowered at most every other year. (Unfortunately, this article is not freely available as a PDF but you can get it from Wiley or JSTOR.)

Having read about the sex ratio bias in this species, I was curious whether that was something that would show up in iNaturalist observations as well. So I set out on a little annotation project, marking male and female plants in the Southern Appalachian Mountains (to limit time investment). Overall, iNaturalist observations show a good overlap with the range map for this species on BONAP (the outlier in New Hampshire is a rosette of leaves that looks to be something else misidentified as this species).


Observations of Chamaelirium luteum recorded on iNaturalist (left) compared against the distribution map from BONAP. The yellow shaded area represents the "Southern Appalachian Mountains" place boundary on iNaturalist.

There are no sex chromosomes so the only way to distinguish between male and female plants is by flower morphology. Fortunately, this is fairly straight-forward on typical iNaturalist pictures due to the sexual dimorphism of the flowers as shown in the images below.


Comparison between male (left) and female (right) flowers of Chamaelirium luteum, using a collage of Creative Commons licensed pictures from iNaturalist observations. Male flowers can be recognized by the presence of anthers atop six stamens, while female flowers have a three-parted stigma leading to a swelling ovary that eventually turns into the seed capsule. Both male and female flowers have six white, linear petals surrounding their reproductive parts.

So what's the verdict? I think the case is pretty clear: iNaturalist observations support that there is a sex ratio bias towards more males than females. As reported in the papers above, peak bloom time was in May, which also coincided with peak observation time on iNaturalist. I only annotated flowering and fruiting plants (155 or ~69% of 226 RG observations in May; most of the remaining plants showed rosettes of leaves with no flowers) that were clearly identifiable as either male (128 observations or ~83%) or female (9 observations or less than 1%) for a bias of a whopping 14x more males than females observed at peak bloom. I was undecided about the sex on 18 (~12%) flowering observations, mostly due to the photos being too far away or too blurry to see the necessary details, but even assuming that these plants are females the gender bias is still pretty clear.


Phenology (A) and sex (B) distribution data for Chamaelirium luteum observations in the Southern Appalachian Mountains.

And now that I've successfully procrastinated until midnight, I've got to get ready for final exams tomorrow... o_o (Fortunately, I'm the instructor, not a student, haha!)

Posted on December 08, 2022 05:21 AM by annkatrinrose annkatrinrose | 2 comments | Leave a comment

November 08, 2022

Appalachian snakeroot identification resources

Not too long ago (earlier this year?), iNaturalist started recognizing Appalachian snakeroot (Ageratina roanensis) as a species rather than a variety of A. altissima. Prior to this, many of these plants were identified to Research Grade under A. altissima with only few being narrowed down to variety. I know I have contributed to this as I rarely ID to variety or subspecies, and as far as I can tell nobody has revisited these observations yet to see if they need updating. Since there aren't enough observations identified to A. roanensis yet (77) to qualify for inclusion in the Computer Vision training set, iNat CV consistently suggests A. altissima for all of them, further adding to the pool of potentially misidentified plants. The purpose of this post is to summarize a couple of resources that might help with sorting them out.

Distribution and Habitat:
A. roanensis appears to be a Southern Appalachian endemic found in the mountainous areas of Alabama, Georgia, Kentucky, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia, and primarily at elevations above ~4,000 ft. Its typical habitat is moist to mesic northern hardwood forests and spruce-fir forests.

Distinguishing Characters:

  • Leaves: The leaf blades tend to be more deltoid (triangular) in shape compared to more ovate in A. altissima, and the leaf base is said to be generally subcordate or truncate vs. generally broadly cuneate. However, I see a lot of overlap and I'm not confident I could tell them apart for sure just based on leaf shape.
  • Inflorescences: These are said to be arranged in more dense corymbs in A. roanensis vs. more open corymbs in A. altissima. A. roanensis has more florets per head (18-34) compared to A. altissima (9-20). This can be hard to see on the typical iNat photographs - I find it easiest to count if the individual flowers haven't opened up yet. Again, there appears to be quite a bit of overlap with Weakley suggesting A. r. can go as low as 15 florets and A. a. can show up to 25 florets. Another difference is the length of the phyllaries with 5-7 mm in A. roanensis vs. 3-5 mm in A. altissima.

If anyone knows of other features that can be used to distinguish them, and in particular how to tell them apart on the typical iNat-quality photographs, please feel free to add those tips in the comments below!

References:

Posted on November 08, 2022 12:49 PM by annkatrinrose annkatrinrose | 6 comments | Leave a comment

October 21, 2022

NC BioBlitz next week!

UNC Greensboro and Appalachian State University will have their first BioBlitz competition happening next week. Guess who volunteered to help organize this? Can't say no to a challenge involving iNaturalist, right? Of course I got involved with this, and now I'm going to try to get all my followers involved too! :-)

Anyone can participate, either as an observer or as an identifier. Observations have to be of wild organisms, made on university properties, and during the week of Oct. 24-Oct. 30, 2022. You can join the AppState BioBlitz 2022 project if you want, or use it to filter for observations that need IDs to help us out!

There will be prizes to win, extra credit to earn, and a lot of iNat newbies interacting with the platform for the first time. I will try to keep an eye on things, but if you notice any irregularities or problems arising from this BioBlitz event (e.g. a bunch of obviously planted stuff not marked cultivated or nonsense IDs being added), please feel free to let me know and I can do some quality control and communicate with faculty and students involved.

Posted on October 21, 2022 11:17 PM by annkatrinrose annkatrinrose | 0 comments | Leave a comment

October 09, 2022

Almost there: Help beaked dodder qualify for CV inclusion!

Every now and then I come across a species that should be fairly easy to identify, but there aren't enough confirmed sightings yet on iNaturalist for it to be included in the computer vision (CV) training set. One such species is beaked dodder (Cuscuta rostrata, currently 73 observations total).

Yes, I can see those of you familiar with dodder raise an eyebrow at the assertion that this is easy to ID (most dodders are anything but and community ID stays at genus level). However, this one is! If you come across this plant while hiking in the woods and know what to focus on, you can get a picture that allows for positive ID, and if you see this feature on photos on iNaturalist within the correct range you can quite confidently identify it.

The feature in question is a beak-like extension of the ovary that gives the plant one of its common names beaked dodder. Other dodders growing within its range (e.g. the otherwise very similar C. gronovii) do not have this type of beak on their round ovaries. Another feature that works in the field is to smell the flowers - this dodder species is said to have a very fragrant smell. The combination of correct range + fragrance + beak makes for a slam-dunk botanical ID that is sure to impress all your naturalist buddies!

Where to look for it:
This species is a Southern Appalachian endemic and occurs mostly in high elevation hardwood forests from West Virginia south to northeast Georgia. It likes shady areas (I've found it growing in seepage areas in deep shade) but may also be found in more open places like grassy balds. (The similar C. gronovii is essentially a wetland species, often found along stream margins and in marshes and wet fields.)

Host plants:
It does seem to have a wide range of host plants that it can latch onto. Numerous herbaceous species (I've seen it on Rudbeckia, Monarda, and Impatiens, for example) and a few woody species (Rubus, Hydrangea) appear to be preferred hosts. It can be grown on Coleus in cultivation, if anyone is so inclined.

Posted on October 09, 2022 06:24 PM by annkatrinrose annkatrinrose | 1 comment | Leave a comment

December 03, 2021

White-flowered stonecrops of eastern North America

If you trust iNat's ID suggestions, then there's only one white-flowered stonecrop in the eastern US, Sedum ternatum. However, as anyone familiar with the pitfalls of computer suggestions might guess already, there are actually more than that. One in particular, Sedum glaucophyllum, is frequently misidentified as S. ternatum but tantalizingly close to having enough observations to be included in the next computer vision model. This post is intended to raise awareness of its existence and provide a comparison and guidance how to tell the two species apart.

I first encountered S. glaucophyllum on iNat while reviewing observations for S. ternatum and noticing different leaf arrangements than the plants I was familiar with. Almost at the same time, I was made aware of the existence of S. nevii through a plant give-away at the NC Native Plant Society. This made me look into these additional species a little bit more. Both have white flowers very similar to S. ternatum and neither of them are "known" by the current computer vision model.

Sedum Comparison
Botanical drawings of S. ternatum and S. nevii from Britton, N.L., and A. Brown, 1913, An illustrated flora of the northern United States, Canada and the British Possessions. Note the leaves in whorls of three on S. ternatum sterile shoots and opposite or whorled on flowering shoots as compared to leaves in spirals on sterile shoots of S. nevii with alternate leaf arrangement on the flowering shoots. S. glaucophyllum was split from S. nevii later and therefore did not have a separate drawing in this publication. However, it is similar in appearance but more variable and typically a little larger than S. nevii.

Both S. glaucophyllum and S. nevii are much rarer finds than the common woodland stonecrop and more specialized in their habitat. A glance at their distribution maps shows that both overlap with S. ternatum but are more restricted in their range and do no overlap with each other. S. glaucophyllum is endemic to Virginia and West Virginia with a few isolated occurrences in North Carolina and Maryland, while S. nevii is mostly found in Alabama with some populations in Tennessee and Georgia. S. glaucophyllum is found in cracks on cliffs and rocky habitats with moderately high pH soil and is absent in acidic rock outcrops. S. nevii grows in shallow, gravelly soils on steep bluffs of gneiss, an acidic, granite-like rock.

Sedum distribution map
Distribution of Sedum ternatum, S. glaucophyllum, and S. nevii in the Eastern US based on BONAP data to color in the distribution for each plant.

Since the current ranges of S. nevii and S. glaucophyllum do not overlap, location should be a clue for identifying these if found growing wild. (However, both species may be used as garden plants beyond their native range.) Digging a little deeper, it appears S. glaucophyllum differs from the other two species by chromosome count. While S. nevii always has 6 chromosome pairs and S. ternatum has 8, S. glaucophyllum shows 14 chromosomes or more, suggesting that it may have originated as an allopolyploid of the other two species.

It should be mentioned that there is one more species of white-flowered Sedum present in the eastern US, S. pusillum. However, this species is more similar to the elf orpine, Diamorpha smallii, currently included in the CV model and therefore more likely to be confused with that species than with S. ternatum. It is restricted to granite outcrops from Anson County, NC, to southwestern Georgia.

Posted on December 03, 2021 05:41 AM by annkatrinrose annkatrinrose | 3 comments | Leave a comment

Milestones and meta-data

I noticed I haven't posted anything in my journal for a while, so I guess it's time for a bit of a recap! (Also, it's final exam week so naturally I'm looking for something to distract me from grading...) It's been a little over two years since I joined the iNaturalist community. The pandemic put the brakes on some of the activities I had planned when I started, such as a plant phenology project with our local chapter of the North Carolina Native Plant Society and a BioBlitz at the AppState Nature Preserve in spring 2020. In addition to stay-at-home orders and lock-downs preventing access to some of my usual hiking spots, converting all our classes to remote teaching took its toll on spare time!

However, I still managed to break a few personal milestones. At some point over this past year, I reached 1,000 species observed. I meant to keep an eye on that number to see when it happened, but managed to miss that moment. One day I checked and I was already well over the mark, currently at 1,170. This is a moving target, of course, as IDs may change based on community input. I did manage to catch the exact time I broke the 5,000 observations threshold. Obs #5,000 is a life list first for me! When I started out, I imported a lot of stuff from my Flickr account. That certainly helped to get my observation numbers up quickly as many of these are actually from before I joined iNat. I still have a backlog of about a decade worth of photos to go through that I didn't post to Flickr so I'll be able to add additional pictures and some more past observations once I get the time for that. Somewhere along the way I managed to sneak into the spot of top observer for the Blue Ridge Parkway, although I guess that position depends on how competitive eraskin is going to get over it.

I'm grateful for the many people who have provided IDs for my observations! I've learned so much from this and discovered new species I didn't know existed because they were omitted from the field guides I have. When I started, I decided that I would try to pay back to the community by making at least as many IDs for others as I post observations. That turned out to be a lot of fun and I'm currently at about a 3:1 ratio of IDs vs. observations. I love digging through the unknowns for my area to see what I can recognize, and I also frequently go through Plantae for things I can narrow down to at least family if not genus or species. Just recently, I've discovered the need for IDs in Denmark and that looks like a lot of fun, too! Since I grew up in northern Germany, a lot of the plants are 'old friends' and have me on a trip down memory lane, being a child again picking wildflowers in the woods with grandma. This was well before I developed an interest in botany, but thankfully iNat knows most of the German common names for a lot of these as often that is the only name I know for them.

The forum is another great resource with oodles of tips and tricks. I used some of these to create the figures below to get an overview of all my observations and identifications on iNat so far. The link for the observation and identification heat maps was provided by bouteloua in a feature request, and the link to obtain your identifier stats can be found in the IdentiFriday thread. Note that the colors in the pie charts have no relation to the colors on the heat maps - I just happened to accidentally pick a very similar color scheme and didn't feel like doing them all over again. I guess the bottom line from this is that I really like to focus on the plants (~3/4 of my own observations, and >90% of my IDs for others).

iNat Observations

iNat IDs

Last but not least, a call-to-action! If you know something about plants and would like to help nudge some of those stuck at Plantae due to ID conflicts, here's a handy ID URL provided by arboretum_amy in yet another forum thread.

Posted on December 03, 2021 02:31 AM by annkatrinrose annkatrinrose | 1 observation | 0 comments | Leave a comment

September 12, 2020

The Nipplewort-Imposter

This plant has been bugging me since we first noticed it last year and all the folks with plant ID apps on their phones helpfully identified it as Nipplewort (Lapsana communis) introduced from Europe. I checked it out on the computer at home, and the USDA database had a report of it only in one of the more southern counties in NC but not where we were hiking. I subsequently tried to find it in my field guides and came up empty-handed. Even Weakley's Flora just mentions it as being uncommon in NC but doesn't deem it important enough to provide a description.

That's odd, I thought, especially since it seemed to be growing everywhere along trails and roadsides in the woods. Maybe the plant we saw was actually something else? Like a rookie, I had missed to get a picture of the leaves though, so I had to wait a year for it to pop up again before I could investigate further. So here we are, one year later, and I think I finally have figured it out: It appears to be the native Allegheny Hawkweed (Hieracium paniculatum), and all the plant ID apps out there don't know anything about it. Instead, they frequently misidentify it as nipplewort.

Further digging into herbarium records confirms that the hawkweed should be a lot more common around here than the introduced nipplewort. Both species occur in the mountains of western North Carolina with the nipplewort's range overlapping with that of the hawkweed. But where Hieracium paniculatum is reported as "common in the mountains" in "dry to mesic forests and woodlands, especially where disturbed, such as logging roads, trailsides, wooded borders," Lapsana communis is listed as "very rare." It was collected in 1938 in Haywood County, 1995 in Madison County, 2002 in Swain County, 2005 in Ashe County, and 2010 in Buncombe County. That's it for NC herbarium collections.


Range comparison of nipplewort (purple) and Allegheny hawkweed (pink and purple). The map was colored in using data from Vascular Plants of North Carolina. The plant drawings are from the illustrated flora by Britton & Brown, published in 1913 (now public domain), and were downloaded from the USDA PLANTS database.

The best way to tell the plants apart seems to be by the leaves. Nipplewort's leaves are variable along the plant but the lower leaves have a large terminal leaflet and one to four small side leaflets and regularly toothed margins. Allegheny Hawkweed produces leaves only on the stem with basal leaves usually lacking, and they are thin and elongated by comparison and have an irregularly toothed to entire margin.

It seems the iNat computer vision algorithm is not the only one that gets this one wrong. (On all the plants I checked, it never actually offered what I think is the correct ID.) Other apps, like Picture This, misidentify the plant as well. It seems to be a self-perpetuating ID error - people identify the plant as nipplewort because that is what the app suggests, which then teaches the app to identify this as nipplewort again on similar photos. I suspect a lot of the "nippleworts" out there on iNat are actually Hieracium paniculatum, at least here in the Southern Appalachians. Please feel free to comment on this or help fix some of the incorrect IDs!

Posted on September 12, 2020 10:09 PM by annkatrinrose annkatrinrose | 4 observations | 5 comments | Leave a comment

November 24, 2019

Chickweeds in North Carolina

The purpose of this page is to provide an identification aid for chickweeds in North Carolina, predominantly the type found blooming in the woods in the mountains in spring. There are two genera commonly referred to as chickweeds: Stellaria and Cerastium. Here in NC, we have three native members of Stellaria (S. pubera, S. corei, and S. alsine) and two native members of Cerastium (C. nutans and C. brachypodum), with non-native and invasive species from both genera also present. This sounds like a mess to sort out, but if the goal is to identify native Stellaria it is actually fairly easy to tell these apart from the others. By far the most common one found in the woods in the mountains is the star chickweed, S. pubera.

The first step would be to distinguish native from non-native species, and Stellaria from Cerastium. If the plants are in bloom, the size of the flowers and shape of the petals is the best indicator, with different leaf shapes to support identification. As shown on the figure below, S. pubera has flowers twice the size of the others (1/2 inch across, compared to 1/4 inch) and is also known by the common name giant chickweed because of this. The characteristic that sets Stellaria apart from Cerastium is the depth of the notches on the petals. All these plants have five petals, but in Stellaria they are notched so deeply that they often appear as ten, whereas the notches don't go as far in Cerastium.


Comparison of flower size and characteristics of common native chickweed (left) and three common invasive chickweeds (right), colored in with Photoshop to make it easier to distinguish sepals and petals. The original flower pictures are from the illustrated flora by Britton & Brown, published in 1913 (now public domain), and were downloaded from the USDA PLANTS database.

A large-flowered plant found growing in the woods is most likely S. pubera. However, S. corei also occurs throughout the mountains and has similarly large flowers. The way to tell between S. pubera and S. corei when in bloom is by the length of the sepals. In S. pubera they are shorter than the petals, while in S. corei they are longer and extend past the petals when the flower is fully open. The pictures below illustrate this characteristic. Note these are young flowers that have just opened up, so the anthers are bright red. As the flowers mature, they might lose the bright color. The anthers on S. pubera stay dark, often an orange-brown, while I've seen some flowers of S. corei where the anthers were lost or not as strikingly colored.


Comparison of the two chickweeds native to NC mountain forests: The one on the left is the common star chickweed (Stellaria pubera) and was a rescue from a construction site; the one on the right is the rare Tennessee chickweed (Stellaria corei) purchased from a native plant nursery.

As mentioned above, the ranges of these two chickweeds overlap, with S. pubera common throughout the mountains and Piedmont, while S. corei is rare and restricted to the mountains and maybe upper Piedmont. Both species prefer rich forest habitats, while the third native Stellaria species, bog chickweed (S. alsine), is a wetland specialist and only occurs in the southwestern part of the state.


The maps were colored in using data from Vascular Plants of North Carolina for the native species and BONAP for the non-native ones. The plant drawings are from the USDA website and not copyrighted (original source: Britton & Brown: An illustrated flora of the northern United States, published 1913). They are scaled to each other for size comparison.

There are several non-native species in this genus and only the two most common ones are shown in the figure above. (The others are less common and more scattered.) Common chickweed, S. media, appears to occur throughout the state, with gaps in the occurrence data probably due to underreporting rather than an actual absence in those counties. Grass-leaved chickweed, S. gramineum, is also wide-spread. Besides differences in the flower size and their propensity to grow in human-disturbed areas, the shape of the leaves is another way to tell the invasives from the natives. S. media has more heart-shaped leaves, and S. graminea has more grass-like leaves compared to the natives.

No discussion of chickweed would be complete without at least mentioning the second genus, Cerastium, commonly referred to by the name chickweed. As explained above, these can be distinguished from Stellaria by the less deeply notched petals. The most common native species to encounter from this genus is nodding chickweed, C. nutans, which is fairly common in rich woods in the mountains and rare in the Piedmont. The second native species, S. brachypodum, has only few reports in the state so far and may have actually been introduced.


The maps were colored in using data from Vascular Plants of North Carolina for the native species and BONAP for the non-native ones. The plant drawings are from the USDA website and not copyrighted (original source: Britton & Brown: An illustrated flora of the northern United States, published 1913). They are scaled to each other for size comparison.

There are at least five non-native Cerastium species in the state and only the two most common ones are shown in the figures above. These are invasives of disturbed areas and distributed throughout the state. Gaps in the occurrence data are probably due to underreporting rather than an actual absence in those counties. Other non-native species are less common and more scattered throughout the state. All of these would mostly occur in human-disturbed areas, such as roadsides or as garden weeds. Sticky chickweed (C. glomeratum) is an annual weed covered in sticky hairs and with sepals extending beyond the petals, whereas mouse-ear chickweed (C. fontanum) is a mat-forming perennial with stolons that root where they rest on the ground and has sepals shorter than its petals.

Posted on November 24, 2019 06:58 PM by annkatrinrose annkatrinrose | 2 comments | Leave a comment